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J. Phys. A: Math. Gen. 18 (1985) 3319-3325. Printed in Great Britain 

Functional integrals for parabolic differential equations? 

Robert AlickiS and Danuta Makowiec 
Institute of Theoretical Physics and Astrophysics, Gdansk University, PL-80 952, Poland 

Received 18 March 1985, in final form 3 June 1985 

Abstract. The proof of convergence of a discretisation procedure for path integrals associ- 
ated with parabolic second-order differential equations is presented. 

1. Introduction 

The aim of this paper is to present a proof of convergence for a class of path integrals 
associated with parabolic second-order differential equations and defined as limits of 
finite-dimensional integrals. We consider the following di'- tvtial equation 

= 2 ( x ,  D ) f ( -  ; t )  
a t  

where x = (XI, .  . . , x") E R", D = ( a , .  . . a"), a, = a/ax" 

9 ( ~ ,  D) = aQ8(x)a,ap + b*(x)a, + C ( X )  (1.2) 

and the Einstein summation convention is used for Greek letters only. We assume 
that 9 ( x ,  D) is strictly elliptic, i.e. there exists a constant A > 0 such that 

for all x E R" and all 5 = ( e , , .  . . , &,)ER". 
The following notation will be used. aUs(x) is an inverse 9f aUP(x) ,  i.e. 

au8(X)a@Y(X) = s,7 
la(x)l =det(a@(x)).  (1.4) 

u ~ ~ ( x ) ( u $ ~ ( x ) )  is the square root matrix of aas(x) (a@(x)) .  

written as follows: 
The formal path integral representation often used in physics literature may be 

(1) Phase space form 

f ( x o ;  t) = N-m lim GI yk 
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(2) Configuration space form (obtained by integration over p k )  

where A t  = t /  N, Ax: = x : - ~  - x;. 
For a special case 2 ( x ,  D )  = A +  V ( x )  with a large class of potentials ‘k( ) the 

rigorous meaning to (1.3) and (4) may be given using the Trotter product formula. 
Indeed, in this case (1.5) and (1.6) are manifest representations of the Trotter formula 

exp[t(A+ V ) l f =  N - r m  lim {exp[(t/N)A] exp[(t/N)V]}Nf (1.7) 

and the limit N + CO is a strong limit on Banach spaces L p ( R y ) .  
The application of the formal expressions (lS), (1.6) are presented in a book by 

Langouche et al(l982). We should also mention the approach of Truman (1976,1977) 
and Elworthy and Truman (1984) who applied the discretisation method for operators 
2 ( x ,  D )  = z(A + V ( x ) )  where z = 1 or *i and used the different meaning of limit N -f 00. 

Some efforts to prove the convergence of (1.5) and (1.6) for a very general class of 
parabolic equations were presented by Alimov (1972). However, the published proofs 
are incomplete. 

2. The convergence theorem 

We consiaer the class of operators 3 ( x ,  D )  which satisfy the following conditions. 
(i) 3 ( x ,  D) given by (1.2) and (1.3) is fulfilled. Moreover the real functions a U P ( x )  

and b” (x )  are continuously differentiable up to the third order and c( x )  is continuous. 
(ii) The functions a U P ( x ) ,  a ,aaB(x) ,  a,a,aUp(x),  b ” ( x ) ,  a p b ” ( x ) ,  c ( x )  are bounded 

on R” by a number Q < m .  
(iii) Let 2 ( x ,  D )  be treated as an operator defined on the domain C?(R”) which 

is dense in 9 ( R y )  where 9 ( R y )  denotes one of the following Banach spaces: L p ( R y ) ,  
1 ~p <CO, C,(R”) = { f ; f ~  C(R”) liml+,f(x) =O}. The closure L of 2(x ,  D )  gener- 
ates a strongly continuous one-parameter semigroup of contractions on the Banach 
space 9 ( R y )  denoted by {exp( tL);  t 5 0). 

The following remarks may be made. 
(1) The only difficult condition to check is condition (iii). However, we show in 

0 4 that there exists a large class of operators 2 ( x ,  D )  satisfying (iii) on different spaces 
9(R’). 

(2) The contraction property may be always replaced by the exponential bound 

We now formulate the main result. 
)Iexp( tL)((  4 exp(At), t 5 0. 

Theorem 2.1. Suppose that 2 ( x ,  D )  satisfies the condiions (i), (ii) and (iii). Then for 
an arbitrary element g (  . ) E  9 ( R y )  the function 

f(., t )=exp(tL)g( . ) ,  tsO (2.1) 
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is given by (1 .5 )  or (1.6) where the limit N+oo is taken in the norm on 9(R')  and 
f (x ;  0) = g(x).  

In order to prove the above theorem we need the following lemmas. First we 
formulate a certain generalisation of the Trotter product formula proved by Chemoff 
(1968) (see books by Davies 1980, and Bratteli and Robinson 1979). 

Lemma 2.2. Let X be a Banach space. The function 

F :  (0,s) -, B(X), S > O  

into bounded linear operators on X satisfies the following conditions: 
(a)  IIF(t)llG exp(at), t E (038) a ER, 
( b )  lim,+,, t - ' (  F (  t)f-f)  = Lf 

where L is a generator of a strongly continuous one-parameter semigroup of contrac- 
tions on X denoted by {exp( tL); t 3 0) and f is an arbitrary element from the core 9 
of L. 

Then 

exp( tL)g = lim [ F (  t /  N)INg 
N-CS 

for all g EX. 

We define now a family of integral kernels 

O s  t - ,  G,(xly) x ,yER" 

= (4Tt )- "'21 a (x)l-I'* 

xexp(-it-'(aap(x)(x" -y"+tb"(x))(xP - y p  + tbP(x))}. (2.4) 

Lemma 2.3. There exists S > 0 such that for t E (0, 6 )  the integral kernel (2.3) and (2.4) 
defines a bounded operator G, on 9 ( R " )  satisfying condition ( a )  of lemma 2.2 with 
certain (Y > 0. 

Proof: Let g e  9(R") .  We use the following estimation (Kato 1966): 

IIGrgIl smax(M' ,  M")llgtl 

where using G,(x 1 y )  2 0 we have 

(2.5) 

By direct calculation we obtain 

M ' =  1 .  



3322 R Alicki and D Makowiec 

Now for a fixed y E Iw’ and t 2 0 let 

= 5 G A x l y )  d x + I  G 1 ( x l y )  dx 

= ZJy, t )  + I X Y ,  t ) .  

I x - y l r r  Ix-yl>r 

(2.8) 

Here 1x1 = (E, x a x a ) l i 2 .  

variables to be carried out in the integral Zr(y ,  t ) ,  t E [0, 6’): 
For a suitable small r > O  and 6 ’ > 0  the conditions (i)  and (ii) allow a change of 

X, + Z, = u ~ ~ ( x ) ( x ~  - y ”  + t b ” ( x ) )  ( ~ 9 )  

such that 

(2.10) 

where @(z) is a Jacobian of the inverse transformation to (2.9). 
Using the Taylor expansion of Q(z) at z = 0 up to the third order and properties 

of Gaussian integrals we may finally estimate the t dependence of I r ( y ;  t )  for t E [0, 8’) 
by 

Zr(y, ?)a (1 +Kit+ K 2 t 3 / ’ ) .  (2.11) 

Here the constants K ~ ,  K* are independent of y and t because of condition (ii) 
I : (y ,  t )  may be estimated as follows: 

Due to the well known fact that for all E > O  

for all p E R, 

lim t p  J dz exp(-(zI2/ t )  = 0 
IZl==€ 

1-0 

we may estimate for t E (0, a”), 6“>  0 

IL(y, t )  s ~ ~ t .  

(2.12) 

(2.13) 

Hence using (2.11) and (2.13) we prove the lemma choosing suitable a>O and 
S = min{ S ’ ,  6”).  

We define now a short-time propagator for 2(x ,  D )  by the following formula 

F l ( x b )  = exp(tc(x))G,(x)y). (2.14) 

Obviously F l ( x  I y )  also satisfies condition ( a )  of lemma 2.2 with a’= a + 0. 
Lemma 2.4. Let g E  C;(R’) and F, be an operator on 9 ( R ” )  defined by the integral 
kernel (2.14) and t>0.  Hence 

lim t - ’ ( F l g - g ) ( x ) = 2 ( x ,  D ) g ( x )  (2.15) 
1-0 

in the sense of norm on 9(Iw”). 



Functional integrals 3323 

ProoJ The proof is based on the method of Nelson (1964). Let for E > 0 and g E C,“(Ry) 

N e =  X E R ” ;  3 I x - Y ~ < E  . { YEsuPP 8 1 
For x E NE and t > 0 we define a function 

x r ( x ) =  lR”dyF,(xly)g(y)-g(x)-t9(*, D ) g ( x ) ) .  (2.16) 

For a fixed x we transform y 

y“ + Z, = af2/p2(x)(yS -x’ - t b ’ (X) )  

and obtain 

(2.17) 

where [ ( Z ) = X ~ + ~ ~ “ ( X ) + ~ ~ ~ ~ ( X ) Z ~ .  

Gaussians we see that for all x E N E  
Using the expansion of g ( [ )  around x + t b  up to the third order and properties of 

lim rC,( x )  = 0. (2.18) 
1-0 

where 6 E supp g according to the generalised mean-value theorem of integral calculus. 
Hence lx - 61 > E .  

For suitable small OS t S 6 lx - [+ t b ( x ) l >  ~ / 2  and then by monotonic convergence 
theorem and (2.12) 

lim t - ’F,g = o (2.19) 
1-0 

in the sense of the strong limit on Lp(Iw” - N E )  1 s p  < CO or C,(R” - N e ) .  Combining 
(2.18) and (2.19) we obtain (2.15). 

Using now the statements of lemmas 2.3 and 2.4 we conclude that the short-time 
propagator F, satisfies the assumptions ( a ) ,  ( b )  of lemma 2.2. Therefore the formula 
(2.2) is valid. Obviously the path integrals (1 .5 )  and (1.6) are manifest expressions of 
(2.2) and hence the theorem 2.1 is proved. 
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3. The ordering problem 

The representation (1.2) of the differential operator 9 ( x ,  D )  is not unique. For example 
we may write it in the following equivalent form 

Z(X, D )  = a u a p ~ p s ( ~ ) + a u ~ p ( ~ ) +  C(X) (3.1) 

where 

AUp(x) = a U P ( x )  

B " ( x )  = b u ( x ) - 2 a p a u P ( ~ )  

C ( X ) = C ( X ) - ~ , ( ~ " ( X ) - ~ ~ ~ " ~ ( X ) ) .  

(3.2) 

According to the usual prescription we now define the short-time propagator as follows 

F , ( x l y )  = ( 4 ~ r t ) " ~ I A ( y ) l - ~ ' ~  

xexp[-$-'Ai,,(y)(xu -y" + t B " ( y ) ) ( x P  - y p  + t B @ ( y ) ) ]  exp(tC(y)) 
(3.3) 

and the path integrals (1.5) and (1.6) are appropriately modified. 
The question arises whether F, fulfils the conditions ( a )  and (b)  of lemma 2.2 and 

therefore the discretisation limit exists. Obviously the estimation ( a )  may be proved 
as before, but the proof of (2.5) is now more difficult. The reason is that in the integral 
over z in the expression (2.17) the Jacobian @(z) appears. However, we may prove 
(2.5) for any function g ,  E CF(R") with a support in a ball with a small enough radius 
r > 0, using the Taylor expansion of @(z) up to the third order. Then due to the 
differentiable partition of unity we may extend the proof for all g E C ; ( R " ) .  

Summarising if the conditions (i), (ii) and (iii) are satisfied then the discretisation 
procedures lead to the convergent expressions of type (1.5) and (1.6) for arbitrary 
'ordering of operators x u  and D' as expected from formal perturbation calculations 
(see Langouche et a1 1982). 

4. Examples 

We present two examples of operators 2(x ,  D )  which satisfy conditions (i), (ii) and (iii). 
(1) Let 9 ( R Y )  and define an operator on C"(Rv)  

2( x, D )  = A + 2'( X, D )  

where 

9 ' ( X ,  D )  = a'"@(x)a,ap + b"(x )a ,  + c(x), 

a U p ( x )  = Sg+ a I U p ( x ) ,  b " ( x ) ,  C ( X )  

fulfil the conditions (i) and (ii). Moreover we assume that Y ( x ,  D )  is symmetric on 
the domain C?( R " )  and 
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= I I ~ Y  c J ~PP:P;IP(P)I*= I I ~ I~ I IA~ I I~ .  
"P 

Then Y'(x, D) is relatively bounded with respect to the closure of A in L2(R") with 
relative bound one. By standard theorems (Kato 1966, Davies 1980) a closure of 
Y(x, D) is a self-adjoint semi-bounded operator and hence generates an exponentially 
bounded strongly continuous semigroup on L z ( R y ) .  

(2) Let . 9 ( R y )  = C,(R") and let 

zIoo([WY) = ( f ; f E  Ca3(RU)) lD"f(x)l + 0) 

where D" is a derivative of an arbitrary order. We consider an operator on C:(Ry) 

Y(x,  D) = auP(x)audp + b"(x)d, 

where a U P ( x )  fulfils (1.3) and moreover 

a"P(x)= ao"P+ap@(x) [a,"P]>O 

b"(x) = b," + bp(x) 

with ayP(  * ), bp( * )E ~ O 3 ( R Y ) .  Repeating now with slight modifications the arguments 
of Yosida (1974) we may prove that the closure of 2 (x ,  D) generates a contraction 
semigroup on C,(R"). 
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